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Abstract17

The study of the water cycle at planetary scale is crucial for our understanding18

of large-scale climatic processes. However, very little is known about how terres-19

trial precipitation is distributed across different environments. In this study, we20

address this gap by employing a 17-dataset ensemble to provide, for the first time,21

precipitation estimates over a suite of land cover types, biomes, elevation zones,22

and precipitation intensity classes. We estimate annual terrestrial precipitation23

at approximately 114 000 ± 9 400 km3, with about 70% falling over tropical,24

subtropical and temperate regions. Our results highlight substantial inconsisten-25

cies, mainly, over the arid and the mountainous areas. To quantify the overall26

discrepancies, we utilize the concept of dataset agreement and then explore the27

pairwise relationships among the datasets in terms of “genealogy”, concurrency,28

and distance. The resulting uncertainty-based partitioning demonstrates how pre-29

cipitation is distributed over a wide range of environments and improves our30

understanding on how their conditions influence observational fidelity.31
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Introduction34

In the last 100 years, more than 40 studies have attempted to quantify the global35

water cycle budget [1]1. This is no surprise because, despite the challenges in robustly36

estimating the amount of water that is exchanged between the atmosphere, lithosphere,37

and hydrosphere, the role of water is pivotal in many abiotic and biotic processes. The38

role of water does not only affect the energy cycle through the latent heat release, but it39

is also closely related to the Earth’s biogeochemical cycles, which are crucial factors for40

ecosystem functioning. Thus, the assessment of the global water cycle budget and its41

variability is critical for understanding how the Earth system works. Having accurate42

estimates of its fluxes is a vital first step to achieve it.43

Among the water cycle fluxes, precipitation, which includes all the forms of water44

that is condensed in the atmosphere and then transferred to the ground, is one of45

the major components and certainly the most measured one. In the last decades,46

its estimation has come a long way as more accurate instruments became available47

and rain-gauge networks have been established at global scale, like for example the48

Global Historical Climatology Network [2]. At the same period, the rise of the internet49

and open data policies allowed for easy and quick exchange of precipitation records,50

which resulted in the development of gridded global datasets. The availability of data51

products became exponential with the beginning of the satellite era, marked by the52

launch of the Tropical Rainfall Measuring Mission [3], offering coverage over previ-53

ously inaccessible or unmonitored regions. In a parallel attempt to further improve54

the spatio-temporal resolution of the measurements, reanalysis data products such as55

NASA/DAO, NCEP/NCAR, and ERA-15 rose to the avant-garde [4–6]. Once again,56

reanalyses implied a further increase in the number of available datasets because57

now we can permute different combinations of models, observations, and assimilation58

schemes. Nowadays, we are in the propitious position to have increasingly accu-59

rate precipitation estimates coming from these three categories; gridded station-based60

observations, satellite measurements, and reanalysis simulations.61

The unprecedented data wealth had a direct effect on the quantification of global62

water cycle budget and its constituent fluxes. In their milestone study, Trenberth et63

al. [7] were the first to exploit the observational and model simulation data availability64

(GPCP v2, CRU TS 2.1, PREC/L, CLM3, ERA-40) to report the global water cycle65

mean state during the 1979–2000 period. Their multi-source approach became the66

norm for the studies that followed, and in the last decade the focus of research shifted to67

the application of consistent data fusion techniques between the various data products68

[8]. Still, although all the studies of global water cycle budget provide estimates of69

precipitation, exploring how precipitation is partitioned over land has received quite70

less attention. Despite the progress that has been made, we still find it hard to answer71

1The original excerpts from all referenced works (excluding dataset studies) can be found in Section S1
of the Supporting Information.
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simple questions about how precipitation is distributed over land, for example ”How72

much does it precipitate over the boreal forests?”.73

So far, there has been only one study of the global water cycle budget that effec-74

tively mapped the distribution of water over various land cover types [9]. Being itself75

a review of earlier works [10–13], the study of Oki and Kanae reports that out of the76

111 thousand km3 of water that annually falls over land, almost half of it (54 thou-77

sand km3) falls over forests, less than a third (31 thousand km3) over grassland, 11.678

thousand km3 over cropland, 2.4 thousand km3 over lakes, and the remaining 12 thou-79

sand km3 are distributed over other smaller fractions of land cover types. A similar,80

but rather simpler, approach can be found in the study of global transpiration by81

Schlesinger and Jasechko [14]. In this meta-analysis of the global transpiration/evapo-82

transpiration ratio, the precipitation estimates were calculated by simply multiplying83

the total biome area to the average precipitation that is known to correspond to84

each biome [14]. This kind of partitioning is missing from modern water cycle budget85

studies, which at most report how precipitation is separated over ocean and land [1].86

In this work, we use a large ensemble of global precipitation datasets to revisit87

the prior estimates and extend them to elevation zones and precipitation intensity88

classes. To quantify the uncertainty in the estimation of the spatial partitioning for89

each category we introduce the approach of dataset agreement, assuming that there90

is no observable “ground truth”. In this manner, we determine the regions and cate-91

gories with high observational fidelity among the 17 datasets, and discuss their impact92

on the overall partitioning. The pattern of differences between the gridded station93

observations, the satellite measurements, and the reanalysis simulations can be easily94

observed, helping us pave the way to future improvements and better estimates of ter-95

restrial precipitation. Still, despite their differences, the state-of-the-art precipitation96

data products are able to provide a clear overview of the distribution of precipitation97

over land in the first two decades of the 21st century.98

Results99

The ensemble mean of the annual terrestrial precipitation is estimated at 111 650 ±100

9 445 km3 (Tables 1 & S2). In this estimate the precipitation over Antarctica is not101

included due to poor station coverage. If we add to the global annual volume the102

Antarctica precipitation estimates reported by Rodell et al. [15] and Bromwich et al.103

[16], then the annual terrestrial precipitation reaches 114 thousand km3 (see Methods).104

As expected, almost half of terrestrial precipitation falls over the tropical climates,105

with temperate regions coming second (≈21%). Together, these two regions account106

for slightly more than two thirds of the terrestrial precipitation while covering only107

one third of global land. On the contrary, the arid regions that have a similar areal108

extent, receive only 10% of the precipitation. The polar regions, which in this study109

include only the arctic and high mountainous domains, receive a very small fraction110

of the total precipitation.111

The largest portion of terrestrial precipitation falls over forested regions, and most112

forest precipitation is concentrated over tropical forests specifically (Fig. 1a, Table S4).113

Depending on the subset criterion, the total precipitation volume ranges between 47.39114
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(land cover) and 66.25 (biome) thousand km3 per year. Land cover refers to the phys-115

ical characteristics of the Earth’s surface, such as forests, wetlands, and water bodies,116

while the biome refers to a large geographic area with similar climate, vegetation,117

and animal life. Therefore, the reason for the above discrepancy is that savannas are118

regarded as a different land cover than forests, while they are considered part of the for-119

est biome (Fig. 1b, Table S5). In total, forests, savannas, and croplands receive 73% of120

the terrestrial precipitation, with the remaining 27% consisting of shrublands (mainly121

desert and tundra), grasslands, barren, and water/snow/ice-covered regions. A similar122

fraction (75%) of the terrestrial precipitation falls over the 0 – 800 m elevation zone,123

with only 7.8% falling over 1 500 meters (Fig. 1c, Table S6). The shape of the elevation124

distribution depends on the elevation zone selection and the different climatic classes125

are well-distributed among them. Overall, 30% of the global land area receives the126

70% of terrestrial precipitation, laying within the three highest precipitation intensity127

classes (Fig. 1d, Table S7).128

In general there is good agreement between the various data sources over the129

regions of high precipitation and low in the more arid ones (Fig. 2a). The Sahara130

and Arabian deserts, the Tibetan plateau, the Andes and the Rocky Mountains, as131

well as the high latitude areas, show large disagreement between the datasets. Water-132

scarce ecosystems, such as deserts, tundras, and montane grasslands, portray the133

largest discrepancies among the datasets (Fig. S5). These ecosystems are dominated134

by shrublands or non-vegetated land cover types such as permanent snow and barren135

regions. Additionally, the higher elevation zones have lower observational fidelity with136

regions above three thousand meters demonstrating low and below average dataset137

agreement close to 75% of the grid cells (Fig. S5c). However, due to the low amounts138

of precipitation that these regions receive, the uncertainty stemming from the dataset139

disagreement doesn’t affect the global total much. We estimate that the grid cells with140

low and below average dataset agreement cover only about 13% of the total precipita-141

tion (circa 14.5 thousand km3 per year with a standard deviation around 2.5 thousand142

km3). This has a rather small impact to the spatial partitioning, which doesn’t change143

significantly if the grid cells with below average dataset agreement are omitted from144

its estimation (Figs. S6 – S9).145

Conversely, regions with high precipitation show stronger consistency among the146

datasets, which is partially caused by the estimation of the standardized inter-quantile147

range used to determine the dataset agreement. This is because the absolute differ-148

ences in many low precipitation regions remain relatively high when compared to their149

means. Thus, if we use the absolute inter-quantile range then the high precipitation150

regions will have lower agreement (Fig. S10). To remedy this effect, we also estimated151

dataset agreement per precipitation intensity class (Fig. 2b). This representation pro-152

vides some extra information about the uncertainty across regions with similar climatic153

properties. For example, the western half of the Sahara desert has lower spread among154

the datasets than its eastern counterpart. Also the tropics and other regions of higher155

dataset agreement appear less homogeneous with emerging hotspots of uncertainty.156

The most likely cause for the heterogeneity is the (non-) existence of operational157

ground stations (Fig. S11).158
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Looking at each data source category, i.e., gauge-based, remote sensing, and reanal-159

yses, there are distinct differences per climate class (Table 1) and land cover type.160

The mean of reanalyses show consistently higher values compared to the station data161

across all climate classes, ranging from 4% for tropical to a tenfold 42% for polar cli-162

mate, and resulting to 11% globally. On the contrary, the estimates of remote sensing163

data appear closer to the ground stations, even in regions with scarce gauge cover-164

age such as the polar or the tropical ones. The highest divergence between them is165

encountered over the continental climate. These differences occur irrespective of the166

land type classification used examined in this study (Fig. 3, and Figs. S12 – S14). In167

addition, the probability distribution of grid average precipitation per land use is sig-168

nificantly different in terms of overall shape. For example, in forests and grasslands,169

station datasets appear to cover half of the total data spread and mainly overlap with170

remote sensing data. On the contrary, the remote sensing datasets overlap with reanal-171

ysis datasets over croplands, where the station datasets show an even narrower spread.172

The highest similarity appears over barren land, where all three data products share173

a common empirical distribution. In general, despite their differences, we see that on174

average the ground stations provide the lowest estimates, the reanalyses the highest,175

while the remote sensing data products are in between them.176

By further examining the overall uncertainty across individual datasets, we observe177

that their variance is more than four times higher than the average inter-annual vari-178

ability of the dataset ensemble. The range of the global twenty-year means spans179

from 92.6 (CPC) to 126.6 (NCEP-DOE) thousand km3 per year (Table S3), with a180

standard deviation of about 11 thousand km3 per year. The mean of the ensemble181

standard deviation of the annual global precipitation values is slightly less, but still182

quite higher than the mean of the inter-annual standard deviation, which is approx-183

imately 2.2 thousand km3. The dataset with the lowest inter-annual variability is184

CRU-TS, whereas on the other extreme lies NCEP-DOE with a value almost 3.5 times185

higher (Fig. 4). CPC appears to report the lowest amount of precipitation in all cli-186

mate classes. Other remarkable negative deviations from the dataset mean manifest187

in MERRA2 for tropical, in CMAP for temperate and continental, MSWEP for arid,188

and GPCC for polar climate. On the contrary, the highest estimates of precipitation189

can be found in NCEP-NCAR for tropical, in ERA5 for temperate, in NCEP-DOE190

and JRA55 for dry and continental, and in EM-Earth for polar climate. The datasets191

closest to the ensemble mean are CRU-TS and GPCP, followed by EM-Earth and192

MSWEP. Based on these findings CRU and GPCP, can be regarded as the most rep-193

resentative choices for large-scale climatologic studies of the terrestrial precipitation,194

when a multi-source approach is not available.195

Discussion196

Spatial partitioning of terrestrial precipitation197

Understanding how precipitation is distributed over different land types and their198

corresponding climatic properties is crucial for progressing the study of the global199

water cycle. Our results can be used either as a reference for attributing past and200

future changes in the global water cycle functioning or to evaluate its representation201
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in climatic models. We also expect future research to apply similar partitioning in the202

other water cycle components, such as evaporation and runoff. When these variables203

will have also been analyzed, we will have a more consistent picture of the moisture204

exchange between the land and the atmosphere, as well as its storage across land.205

Terrestrial precipitation is a good place to start, due to the increasing data availability206

which has also been exploited in this study.207

Following the same principle, all the global water cycle studies use terrestrial pre-208

cipitation as the most reliable component for estimating the global mass budget. Our209

results of 114 thousand km3 per year show a good match with the pioneering studies210

of Oki and Kanae [9] and Trenberth et al. [7], where the total terrestrial precipitation211

was reported at 111 and 113 thousand km3 per year, respectively. In addition, look-212

ing into the global estimates of terrestrial precipitation in more recent studies, our213

global estimate appears to be very close to their median. In their chronological litera-214

ture review on global water budget studies, Vargas et al. [1] show that the 11 studies215

which have been published since 2009 have a median of terrestrial precipitation at 113216

thousand km3 per year (range 110 to 126 thousand km3). All these results advocate217

that in the last two decades we have increased our confidence about the estimate of218

total terrestrial precipitation by significantly constraining its uncertainty.219

If we look at the spatial partitioning by Oki and Kanae [9], we observe small devi-220

ations in the three land cover types presented there. Forests appear to receive 54221

thousand km3 per year versus 47 thousand in our study, grassland 31 versus 28 thou-222

sand km3 per year, and cropland 11 versus 18 thousand km3 per year. These differences223

could be attributed to the satellite advancements in land type characterization, but224

also to the land cover changes that occurred in the last 15 years. Nevertheless, the225

adjacency of the results is encouraging and supports the distribution among the other226

land cover types. When compared with the results of Schlesinger and Jasechko [14], we227

also see some agreement in the relative partitioning over biomes. The two dominant228

biomes, i.e., tropical rainforests and grasslands, appear to receive a larger fraction of229

precipitation in our study, i.e., 42% vs. 35% and 18% vs. 14%, respectively. On the230

contrary, there is up to 1% difference on temperate forests (14% of total precipitation231

in our analysis), boreal forests (8%), temperate grasslands (5%), deserts (4%), steppes232

(2%), Mediterranean biomes (1%). The most likely reason for the discrepancy could233

be found in the fact that Schlesinger and Jasechko [14] omit the estimation for sub-234

tropical forests and grasslands, which if taken into account would result to comparable235

values to our findings. An interesting implication of this match is the potential to use236

the biomes with high dataset agreement as predictors in the extrapolation schemes237

for generating gridded datasets.238

The merits of the dataset agreement approach239

All the precipitation estimates are dependent to each other. There is a large degree240

of overlap in the source data, i.e., the gauge station networks, that go into the dif-241

ferent observational data products, as well as the use of some datasets by some other242

(Fig. 5a). Thus, it is no surprise that the majority of the cross-correlation coefficients243

of global annual precipitation lies above 0.8 for the annual precipitation time series244

(Fig. 5b). This is a result of the different methodological approaches applied to the245
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same raw data records. Either it is the calibration process of the satellite sensors, the246

assimilation schemes of the reanalyses, or the extrapolation method of the gridded247

station products, in principle each method uses a transfer function to predict the areal248

precipitation sum for each grid cell. If datasets use similar methods and/or sources249

which result in high cross-correlation, the mean estimates will be inevitably affected250

because in our study all observations are considered equally plausible estimates. This251

would imply that there is some sort of “observational democracy”, which dampens252

any strongly opposing “opinion” or outlier.253

A similar issue has risen in the case of climate model simulations. It soon became254

apparent that the “model democracy” assumption can result to significant biases in the255

estimates of the ensemble statistics [17]. In the same study, it is also argued that taking256

the “model democracy” approach of the large model ensembles, could be a more robust257

method compared to weighting or sub-sampling approaches without out-of-sample258

testing. In the case of gridded observations, an objective out of-sample testing or any259

other form of evaluation is not possible as there is no ground truth. There are very260

few regions with high-resolution (< 10 km) gauge networks, for different climatologies,261

elevations, etc. to make them suitable for global scale evaluation. Therefore, despite262

the on-going research in the data fusion techniques or the climate model ensemble263

validation, there is no straightforward way to tackle this challenge, because the true264

value of each grid cell remains unknown [18].265

Is there a way to distinguish whether high correlation (Fig. 5b) and similar266

mean values (Fig. 5c) are due to structural similarities between the datasets (same267

sources/methods) and not a confirmation of lower uncertainty? By simply using the268

cross-correlation or mean distance metrics, it is hard to say. However, if we look in the269

“genealogic” information among the datasets (Fig. 5a), we can disentangle if what we270

see is a robust or a biased estimate (Fig. 5d). If two datasets have a direct structural271

relationship and share high correlation and low mean distance, they can be regarded272

as alternative versions of the same dataset. This is, for example, the case of GPCC273

and MSWEP. On the contrary, in most cases data products from the same family274

do not agree in terms of cross-correlation and mean distance, e.g., ERA5-Land and275

EM-Earth. Here, we can assume that the datasets offer extra insight to the dataset276

ensemble with far less structural overlap.277

By applying this methodology, “observational democracy” can provide reasonable278

results by keeping the datasets that appear to significantly diverge from the ensemble279

mean. Hence, we propose to first present the whole range of data source variability, and280

then address the observational fidelity in terms of quantifying the dataset agreement.281

In this manner, we enhance the explanatory capability of the results at a cost of282

predictability strength due to increased uncertainty. Inevitably, this approach is prone283

to the threshold selection that determines which datasets are considered similar and284

which not. Despite that, it can be very insightful in determining the influence of these285

relationships to our global estimates as we will see below.286
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The impact of dataset disagreement in the global precipitation287

fluxes288

Even if we cannot be absolutely confident about the dataset dependencies and overlap,289

the dataset agreement framework can function as an indicator of the most plausible290

bias sources. In our case, it is easy to see that MSWEP is very similar to GPCC,291

and GPCP to GPM-IMERG (Fig. 5d and Table S3). In addition, all four of them are292

linked with numerous other datasets (Fig. 5a), implying that their estimates could be293

repeatedly diffused to the other data products. To explore the impact of the poten-294

tial overlapping, we repeated our global estimations, excluding these four datasets in295

multiple combinations. In all cases, the differences were not higher than 1% for the296

mean global precipitation volume and 3% for climatic means. This is because their297

estimates are so close to the ensemble mean that it makes the estimation of the mean298

insensitive to their removal. Correspondingly, we can investigate the consequences of299

removing some obvious outliers, i.e., CPC and the NCEP family (NCAR, DOE, and300

CMAP; Fig. 4 and Fig. 5b, c). Again, the results remain below 1%, most likely due to301

the high number of datasets and the symmetry of the outliers, as two of them underes-302

timate and two overestimate the global mean. Therefore, by keeping all the datasets,303

we preserve the maximum information, with no severe consequences to the estimation304

of global or climatic means.305

The other side of the coin is the uncertainty due to dataset disagreement. Since it is306

strongly dependent to precipitation intensity, reaching its top over arid and mountain-307

ous regions, its impact in our results is quite low (Fig. 3, and Figs. S6 – S9). However,308

looking more into the regions with high dataset disagreement should be one of the cor-309

nerstones of future research. Even though the grid cells with the low dataset agreement310

receive a small fraction of the global precipitation total, they can be found in regions311

of high environmental and socioeconomic significance. We see that the strongest incon-312

sistencies lie over arid zones covering approximately 41% of the Earth’s land surface313

with a population above two billion, mainly engaged in agricultural and pastoral activ-314

ities that are sensitive to water availability [19]. Similarly, mountains or high elevation315

zones that also show high discrepancies, play an important role in the formation of316

glaciers, snowfields, and aquifers that store water over extended periods. An excep-317

tion to this is barren land, where there is enhanced agreement between reanalyses and318

the other data sources. This could mean that the reanalyses land surface schemes are319

not ideal and overestimate transpiration and water flux to the atmosphere and thus320

higher local recycling of rainfall. Finally, future changes in precipitation patterns and321

amounts may have critical impacts on water availability and ecological functioning322

over arid or mountainous areas. Thus, improving our estimation of the water cycle323

components, particularly in regions with low observational fidelity, is crucial for better324

managing water resources and mitigating the impacts of extreme climatic fluctuations.325

The best way to increase observational fidelity is by extending the in-situ monitor-326

ing networks. A simplified example for the importance of ground stations to dataset327

fidelity can be demonstrated if we consider the stations from GHCN network (Figure328

S11). Although, each data product uses a slightly different station network for interpo-329

lation, validation or assimilation, examining the relationship between GHCN stations330

locations and grid cell dataset agreement is quite informative. Approximately 60%331
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grid cells with at least one station of the GHCN network have above-average and high332

dataset agreement. Unfortunately, this covers only 5% of the grid. In the rest 95% of333

the grid cells with no stations, only 30% show above-average or high dataset agree-334

ment. If this is the case for annual values at 0.25◦ resolution, then we should expect335

even stronger disagreement at higher spatio-temporal resolutions. Increasing the num-336

ber of precipitation stations world-wide is the only tangible approach to remedy this337

issue and improve observational fidelity.338

Conclusions339

In this study, a detailed estimation of the spatial partitioning of precipitation over340

land is presented for the first time. The partitioning is supported by, a conceptual341

framework based on dataset agreement to determine the impact of the uncertainty in342

the precipitation fluxes. We see that despite the progress in precipitation measurement343

the global estimate of total terrestrial precipitation remains very close to the values344

reported at earlier studies [1]. Hence, we can be quite confident that the mean global345

terrestrial precipitation lies close to 114 000 ± 9 400 km3. However, the rise in the346

number of precipitation datasets also revealed the uncertainties at regional scale. The347

reason that the local precipitation variability does not affect the global mean much, is348

that it largely appears over arid regions. As a rule of thumb the lower the precipitation,349

the higher the uncertainty.350

By utilizing the concept of dataset agreement, we mapped the global uncertainty351

not by comparing the precipitation datasets to the “ground truth”, but to their ensem-352

ble spread. In this manner, we assume that dataset agreement can be regarded as the353

quantification of the current research status quo in the estimation the total precipita-354

tion over land. If the majority of the research is close to the true value of precipitation355

then our results will be unintentionally skill-weighted by the inclusion of multiple ver-356

sions of datasets which are closer to the reality. In addition, looking deeper into the357

reasons of dataset disagreement over regions with different geographical features can358

result in improvements for the next generation of data products. Correspondingly,359

areas of strong dataset agreement can be used for evaluating the performance of cli-360

mate model simulations, and benchmark precipitation shifts as seen in the climate361

projections that can be of paramount importance for climate resilience studies.362

Future research could further explore these directions and as well determine the363

partitioning and dataset agreement of the other components of terrestrial water cycle.364

In addition, even though the suggested methodological framework is applied here at365

global scale, it can be easily downscaled up to regional or catchment scale in order366

to map the local atmospheric moisture recycling. Finally, a plausible followup will be367

to investigate the partitioning of the current terrestrial precipitation dynamics and368

its change across the globe over the last decades. All these future steps can offer new369

insights in the study of global water cycle and the quantification of its budget.370

Going back to our initial question about how much water precipitates over the371

boreal forests, our results show that it is still difficult to give an accurate estimate.372

Nevertheless, our study offers an entry point to the answer with an estimate of the373

annual mean between 8 219 – 10 650 km3 or 535 – 693 mm. Station observations374
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would report an annual average at 8 219 km3, satellite estimates would be around375

8 760 km3, while reanalyses would show a quite higher value (10 650 km3). This376

example highlights that a lot remains to be done to narrow down the uncertainty of377

the estimates between the data products at regional scale, but we hope that this study378

can provide a solid starting point to resolve the challenges that lay ahead.379

Methods380

Data381

To quantify the global terrestrial precipitation we have used a homogenized inventory382

of 17 precipitation datasets that cover the period 1/2000 – 12/2019. These include:383

• Five gauge-based products: CPC-Global [20], CRU TS v4.06 [21], EM-EARTH [22],384

GPCC v2020 [23], and PREC/L [24]385

• Seven satellite-based products: CHIRPS v2.0 [25], CMAP [26], CMORPH [27],386

GPCP v2.3 [28], GPM IMERGM v06 [29], MSWEP v2.8 [30], and PERSIANN-CDR387

[31].388

• Five reanalysis products: ERA5 [32], JRA55 [33], MERRA2 [34], NCEP/NCAR R1389

[5], and NCEP/DOE R2 [35].390

A detailed description of the datasets used can be found in Supporting Information391

(Text S2 and Table S1).392

The analysis was performed at annual time step and 0.25◦ resolution. To achieve393

this, data homogenization was performed over four stages that address the variable394

type, measuring units, time step/period, and spatial resolution, respectively. First,395

data products containing precipitation rates were transformed into total precipitation,396

and the measuring units were converted initially to mm and then to km3/grid cell397

to address the differences in grid cell area. The datasets with daily time steps were398

aggregated to annual and subset for the selected period which maximizes the number399

of datasets (1/2000 – 12/2019). In the last step, spatial remapping was performed using400

Climate Data Operators (CDO) [36]. Datasets with resolutions coarser than 0.25◦401

were regridded by repeating the values over the finer resolutions (i.e., nearest neighbor402

remapping), while datasets with resolutions finer than 0.25◦ were upscaled through403

area-weighted averages and remapped (using the same procedure as for the coarser404

datasets) in the case when 0.25◦ was not divisible by the original resolution of a given405

dataset. The annual mass budget of the regridded datasets were approximately 0.01%406

lower than the original data. Additionally, we filtered out all the grid cells covered407

by less than 10 datasets to remove the dissimilarities found in the coastal boundaries408

of the datasets. Antarctica was not included in the analysis, due to extremely low409

station coverage. Instead, the estimate of 2.3 thousand km3 by Rodell et al. [15] and410

Bromwich et al. [16] was added only to the global volume to have a complete estimate411

of the terrestrial precipitation. Three out of 17 datasets do not have global coverage412

(CHIRPS, CMORPH, PERSIANN), and hence were not used for the estimation of the413

global precipitation sum. The annual records were then uploaded to zenodo repository414

(https://zenodo.org/records/7078097) and are freely available for download through415

the pRecipe package [37].416
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Partition categories417

The terrestrial precipitation means were estimated globally, as well as per the Köppen-418

Geiger climate classes, land cover types, biome categories, elevation zones, and419

precipitation intensity classes. For the climate partitioning, we use the main five420

Köppen-Geiger classes (A: Tropical, B: Dry, C: Temperate, D: Continental, E: Polar)421

of the recent classification of Beck et al. [38]. The 14 land cover types of the “MODIS422

MOD12C1 0.25 Degree Land Cover” data product [39] were aggregated to nine by423

merging together the different forest types (e.g., broadleaf and conifer; (Fig. S1)). We424

have also aggregated the 14 biome categories as identified by Dinerstein et al. [40] to425

10 by merging together open and closed shrublands, permanent ice and snow, water426

and wetlands, and by removing the urban and unclassified categories as they covered427

a negligible fraction of the total area (Fig. S2). The elevation zones were determined428

using the topography of ERA5 reanalysis [41] (Fig. S3). Finally, we partitioned the429

grid cells into 10 precipitation intensity classes, based on the deciles of the distribution430

of the total annual precipitation over all grid cells (Fig. S4).431

Dataset agreement432

It is well-known that each data product comes with its strengths and weaknesses.433

At grid scale all of them depend on either an extrapolation scheme (observational434

datasets), either to a physical model combined to an assimilation framework (reanal-435

ysis simulations), or to some transfer function and a calibration approach (satellite436

data products). Hence, none of them can be considered as “ground truth”.437

As an alternative approach we propose the concept of “dataset agreement”. To438

quantify the consensus between the available datasets we calculated the standardized439

interquartile range of the dataset 20-year precipitation means at each grid cell D =440

QP
0.75−QP

0.25

m , where (QP
0.25) and (QP

0.75), are respectively the first and third quartile,441

and m the mean value of all datasets.442

We then classified the standardized interquartile range to five subsets of agreement443

ranging from “High” to “Low”, according to its own quantiles (QD) over all grid cells,444

i.e., “High”D < QD
0.1; “Above average”QD

0.1 ≤ D < QD
0.3; “Average”QD

0.3 ≤ D < QD
0.7;445

“Below average” QD
0.7 ≤ D < QD

0.9; “Low” D ≥ QD
0.9 (Fig. 2a). Hence, “High dataset446

agreement” corresponds to the lowest 10% of the dataset standardized interquartile447

ranges among all grid cells (low dataset spread).448

In our study, dataset agreement depends on precipitation intensity. Therefore, to449

compare the dataset agreement for each precipitation intensity (e.g., dataset agreement450

over heavy precipitation areas), we separately estimated the dataset agreement for451

each of the ten precipitation intensity classes. In this alternative approach, “High452

dataset agreement” will represent the 10% of the grid cells with the lowest spread of453

each intensity class (Fig. 2b).454

To understand the contribution of each dataset to dataset (dis-)agreement, we455

performed two additional steps. Firstly, we estimated the ratio of each dataset global456

and climatic mean to the ensemble mean of all datasets (Fig. 4). In this manner,457

we have pinpointed the most/least representative datasets, i.e., the ones that are458

closest/furthest to the ensemble mean. Then, we used the complex network method459
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[42], to visualize the relationships between the datasets in terms of their usage by each460

other, their correlation, and their distance to their means (Fig. 5). As a threshold for461

the network edges, the highest one third of correlation values and the lowest one third462

for mean distance values was chosen.463

Code and data availability. All source data used are are freely available for down-464

load through the pRecipe package [37] or at the zenodo repository (https://zenodo.465

org/records/7078097). All code used in the analysis can be found at https://github.466

com/imarkonis/ithaca/tree/main/projects/partition prec and the data relevant to the467

study outcomes at https://zenodo.org/records/10836849.468
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Figures & Tables619

Table 1 Mean annual precipitation volume (km3) for the main Köppen-Geiger climatic classes per
dataset type and their terrestrial sum. The standard deviation of each value can be found in
Table S2, while the individual values for each data product are presented in Table S3.

Source Tropical Arid Temperate Continental Polar Global

All 51 259 11 528 22 966 20 129 4 415 111 650
Stations 49 596 10 583 22 637 18 198 4 113 105 721
Reanalyses 53 668 12 630 24 227 2 2658 5 036 119 006
Remote Sensing 50 726 11 417 22 300 19 383 4 017 109 932
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Fig. 1 Global precipitation volume per year and the main Köppen-Geiger classification classes (A:
Tropical, B: Dry, C: Temperate, D: Continental, E: Polar) partitioned by (a) land cover types, (b)
biomes (T/S Forests: Tropical & Sub-tropical Forests, T/S Grasslands: Tropical & Subtropical Grass-
lands, Savannas & Shrublands, T. Forests: Temperate Forests, B. Forests: Boreal Forests/Taiga,
T. Grasslands: Temperate Grasslands, Savannas & Shrublands, Savannas & Shrublands, Deserts &
Xeric Shrublands, Tundra, M. Grasslands: Montane Grasslands & Shrublands, Flooded: Mangroves
& Flooded Grasslands/Savannas, Mediterranean: Mediterranean Forests, Woodlands & Scrublands),
(c) elevation zones, and (d) precipitation intensity classes
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Fig. 2 Maps of dataset agreement derived by the standardized interquartile range of (a) all grid
cells, (b) conditioned over corresponding precipitation intensity class.
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Fig. 3 Mean annual precipitation of all datasets for each land cover and data set type. The black
line and the box plot correspond to all three sources. Points represent annual values from individual
data sets.
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Fig. 4 Dataset (dis-)agreement of individual data products per climate class. The three datasets
with annual estimates closest to the ensemble mean and the two with the lowest/highest means.
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Fig. 5 (a) Dataset generation relationships (dataset “genealogies”). The arrows show the direction
of data application (e.g., GPCC employs CRU-TS). Same color suggest a data product family that
share sources. GPM-IMERG and MSWEP are considered an individual family as they only employ
data from five or more sources but are not used in any other data product. (b) Dataset cross-
correlation network. The network edges represent the highest one-third of the correlated pairs among
the datasets. (c) Dataset mean distance network. The network edges represent the smallest one-third
of the mean distance among each dataset pair. CMORPH, CHIRPS and PERSIANN not included
due to the limitation on global coverage. (d) Dataset generation relationships after keeping only the
cross-correlation and mean distance network edges that appear in Figures (b) and (c).
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